

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Nosorog
Introdaction

An assertive security library.

Requirements

3.5 >= Python <= 3.10

Installing

pip install nosorog

Testing

`python
cd /path/to/lib/
python3 -m unittest discover
`

How to use

Exceptions

Exception | Default message |
— | — |
NosorogMangledNameError | “Use method`s dunder name instead.” |
NosorogWrongPlaceCallError (1) | “Protected method can be called from specified methods only.” |
NosorogWrongPlaceCallError (2) | “Protected method can not be called from other object, use self instead.” |
NosorogWentWrongError | “Something broken.” |
NosorogTypeError | child of TypeError. No especial message provided. |

It is possible to use a concatenation of predefined and custom messages:
`python
raise NosorogMangledNameError("Method __get accessible with _MangledName__get() call.")
NosorogMangledNameError: "Use method`s dunder name instead. Method __get accessible with _MangledName__get() call."
`
But it is one exclusion:
NosorogWrongPlaceCallError uses the message “Protected method can be called from specified methods only.” by default
and or other instead:
```python
from nosorog.exceptions.mixins.nosorog_exception_messages import NosorogExceptionMessages

raise NosorogWrongPlaceCallError(NosorogExceptionMessages.use_self)
# NosorogExceptionMessages: “Protected method can not be called from other object, use self instead.”
```
It is not concatenated.

Full list of predefined messages

Attribute | Message
— | — |
protected_from_not_private_call | “This method protected from not private call.”
method_protected | “This method protected.”
wrong_place | “Protected method can be called from specified places only.”
use_self | “Protected method can not be called from other object, use self instead.”
mangled_call_blocked | “Use method`s dunder name instead.”

Class based decorators

To import class based decorators use:

`python
from nosorog.decorators import protect_private, copy_dicts, silent
`

Decorator | Description |
— | —
@silent | intercepts all the exceptions of Nosorog and returns None instead. |
@silent.include(exceptions) | same as above and list of provided exceptions to. |
— | —
@protect_private.block_mangled_call | protect of name mangling usage. |
@protect_private.one_obj | decorated method accessible with self usage only. |
@protect_private.one_method(“method_name”) | decorated method accessible from one method only. |
@protect_private.call_from(methods) | decorated method accessible from the methods provided in list only. |
— | —
@copy_dicts | makes shallow copy of all the dicts in args and kwargs |
@copy_dicts.deep_args | makes deep copy of all the dicts in args |
@copy_dicts.deep_kwargs | makes deep copy of all the dicts in kwargs |
@copy_dicts.deep_all | makes deep copy of all the dicts in args and kwargs |
@copy_dicts.shallow_args | makes shallow copy of all the dicts in args |
@copy_dicts.shallow_kwargs | makes shallow copy of all the dicts in kwargs |
@copy_dicts.shallow_all | makes shallow copy of all the dicts in args and kwargs |

Function based decorators

To import function based decorators use:

`python
from nosorog.decorators.function_based_decorators import protect_private, copy_dicts, protect_ids, protected_call
`

Decorator | Description |
— |---
`@protect_private(allowed_list=list)` | make a call with `_Class__private_method()` impossible. `allowed_list` it is `str` names of method which you can call the private method from. also support `'self'` (`str`) for calls from same object only. |
`@protected_call(from_method=str, from_file=str)` | make the attack by the file injection impossible. |
`@copy_dicts(deep_copy=bool)` | make a copy of `dicts` in `args` and `kwargs`. |
`@protect_ids(id_names=[str])`| trying to convert id to int or throw Exception. |

Examples

This explanation written for the function based decorators. Class based decorators works the same way with some differences
in the syntax. Read the full documentation on https://nosorog.readthedocs.io.
Private methods

Usage of dunder methods (__method()) protects the code avoiding direct access to the method.

```python
class Example:



	def __get_data(self):
	return 1








>>> Example().__get_data()  # AttributeError: 'Example' object has no attribute '__get_data'
```
But it is possible to use the name mangling.
```python
>>> Example()._Example__get_data()  # 1
```
`Nosorog` provides simple and pushy way to protect the dunder method.
```python
class Example:
    @protect_private(allowed_list=['trusted_func'])
    def __get_data(self):
        return 1






	class Trusted:
	@staticmethod
def trusted_func():


return Example()._Example__get_data()








>>> Example().__get_data()  # AttributeError: 'Example' object has no attribute '__get_data'
>>> Example()._Example__get_data()  # Exception: This method protected from not private call.
>>> Trusted()._Example__get_data()  # 1
```
Also, str `'self'` can be used as a list item to make impossible to call without `self`.
```python
class Example:
    @protect_private(allowed_list=['trusted_func', 'self'])
    def __get_data(self):
        return 1







	def trusted_func(self):
	return self.__get_data()









	class Trusted:
	@staticmethod
def trusted_func():


return Example()._Example__get_data()








>>> Example().trusted_func()  # 1
>>> Trusted().trusted_func()  # Exception: This method can not be called from other object, use self instead.
```


Localization of method call

Python does not provide an easy way to limit where the method can be called from. This makes it possible to conduct an
attack by File Injection. With the help of the Nosorog library it is possible to specify the places from which the
method can be called.
```python
class Example:


@protected_call(from_method=’safe_method’, from_file=os.path.abspath(__file__))
def __get_data(self):


return 1








	class Trusted:
	# Place it to the same file as described in the decorator usage.
def safe_method():


return Example()._Example__get_data()  # 1








```
This is just a variation of the previous decorator.

Protection of the dicts

In the projects where the undefined number of dicts can be passed in args and kwargs, it is possible to make a deep copy
of each if needed.
```python
class Example:


@copy_dicts(deep_copy=False)
def some_method(self, *args, **kwargs):


# now dicts are shallow copies
pass







```
Use @copy_dicts(deep_copy=True) to make deep copies.

Protection of ids

This method has been added just for fun.
It is converts all the ids in the list if possible or throws the TypeError.
```python
class Example:


@protect_ids(id_names=[‘user_id’, ‘pk’])
def some_method(user_id=None, pk=None)


pass







```

Possible Exceptions
```python
@protect_ids(id_names=[‘user_id’, dict()])
>>> Example().some_method(user_id=’1’)  # TypeError: Wrong format of id_names in decorator. Must be list of str.

@protect_ids(id_names=[‘user_id’, ‘pk’])
>>> Example().some_method(user_id=1.234, pk=’text_id’)  # TypeError: Received the ids of wrong type.
```


 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/file.png

_static/minus.png

